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We designed motor learning support for acquiring mo-
tor skills involving neural mechanisms. We should
be able to acquire neural information by analyzing
whole-body muscle data, because the nervous system
controls the musculoskeletal system and lengths and
forces information is fed back to the nervous system.
Motor information is calculated by mapping motion-
capture data on to a musculoskeletal human model.
Neural information represents the set of motor infor-
mation on the muscles innervated by the arbitrary
spinal cord segment. Neural information processing is
proposed which calculates correlation among the neu-
ral information. We demonstrate the effectiveness of
our proposal by experimental results of “kesagiri”.

Keywords: motor learning, muscle innervation, simula-
tion, spinal cord, human behavior analysis

1. Introduction

Expert players and masters use repetitive exercises to
build advanced motion skills. How can this be done most
efficiently? Motion capture is used to measure physi-
cal movement and acquire three-dimensional locations of
specific physical sites. Joint angle and muscle lengths are
calculated by mapping this data onto a musculoskeletal
human model [1–4]. The fact that the solution is not nec-
essarily uniquely determined remains a problem, but once
boundary conditions are determined, tension in whole-
body muscles can be determined [5, 6]. Systems such as
SIMM [7] (Delp et al.) and AnyBody [8] (Rasmussen
et al.) have been marketed to analyze and simulate mus-
culoskeletal human model movement. Even if beginners
generate the same muscle activity pattern as experts, they
cannot produce the same movement because of differ-
ences in individual physical structure. Muscle activity
patterns must suit the physical structure of the individ-
ual. Also, assume the muscle activity patterns generating
a target movement are acquired artificially by optimized
calculation. For robots, if the acquired solution is given
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Fig. 1. Information flow between the musculoskeletal sys-
tem and the nervous system of the human body.

as the target and used for control, the target movement
is generated. In contrast, human beings have sufficient
muscle force to generate a muscle activity pattern, the is-
sue becomes one of whether the targeted nerve activity
pattern can be produced – something that, unfortunately,
cannot be done consciously. As shown by the anatomical
structure of the spinal cord, nerve circuits are locally inte-
grated and massed segments are bundled from the top for
driving. If the combination of low-dimensional character-
istics of nerve activity patterns and objective evaluation of
movement are made clear, nerve activity patterns could be
generated consciously to implement targeted movement.

Here we present an overview of conventional move-
ment analysis. Most studies used parts of whole-body
movement that consolidate coordinated movement, such
as the hand or foot location, or the joint angle of the el-
bow or knee, to compare movements based on movement
measurement. Previous studies also compared the activity
of each muscle, such as myopotential and muscle length.
Sakurai et al. compared a tennis veteran and a beginner
based on the displacement in peak time of muscle activity
[9]. Simply comparing the results of coordinated move-
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Fig. 2. Central nervous system of humans consisting of
brain and spinal cord. The spinal cord is divided into 31
segments that correspond to attachments of groups of nerve
roots. The skeletal muscles are classified by the innervated
nerves.

ment, i.e., postures of the hand or foot, however, pre-
vented partial displacement of the entire body from be-
ing detected. Muscle tension found by electromyography
was restricted by the number of electromyograph chan-
nels. Describing whole-body movement using only part
of the muscles distributed throughout the body, failed to
clarify the degree of local coordination. Muscle length
acquired by mapping motion-capture data onto a muscu-
loskeletal model had hundreds of dimensions. As a result,
major muscles were selected for comparison and informa-
tion about a variety of muscles was not available enough
to extract global and local movement characteristics.

Our purpose is to provide information processing that
extracts characteristics needed for monitoring and sup-
porting motor learning to improve motor skill. Specifi-
cally, motor information is converted to neural informa-
tion based on the anatomical structure of the nervous sys-
tem in the spinal cord (Fig.1). Their characteristics are
calculated and their correspondence to the evaluation are
accumulated. We determined local values such as dimen-
sion or correlation of neural information, together with
global values such as the phase differences between the
set of neural information through calculation. We mea-
sured repetitive exercises to clarify the characteristics ac-
quired. We discuss how to utilize acquired characteristics
to support motor learning.
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Fig. 3. Simple reflex pathway comprising sensory neurons
from muscle spindles to the spinal cord, motor neurons from
the spinal cord to the muscles, and interneurons between the
sensory motor neurons [10].

2. Calculation of Spinal Neural Information
Based on Motor Measurement

2.1. Anatomical Structure of Spinal Cord [11, 12]

The nervous system consists anatomically of central
and peripheral nervous systems. The central nervous sys-
tem generally brings to mind the brain, but consists of
the brain and spinal cord. The peripheral nervous sys-
tem consists of cranial nerves connecting brain directly to
organs and spinal nerves connecting the spinal cord to or-
gans. The spinal cord and spinal nerves are generically
called the spinal nervous system. Organs are controlled
by different nerves, and are classified by the innervated
nerves. The 31 pairs of human spinal nerves consist of
8 pairs of cervical nerves (C), 12 pairs of thoracic nerves
(T), 5 pairs of lumbar nerves (L), 5 pairs of sacral nerves
(S), and a single pair of coccygeal nerves (Coc). These
nerves pass through and depart from the clearance be-
tween spinal bones (Fig.2).

The muscle that operates a joint in cooperation with an
agonist is called the synergist, while that operates the joint
in opposition is called the antagonist. In order to gener-
ate ordered motion, groups of muscles must contract as
their synergists contract and antagonists relax. Nerves are
thus connected in the spine so that if an agonist is excited,
its antagonist is suppressed to excite the synergist (Fig.3).
The resulting movement is coupled and the degree of free-
dom (DOF) is smaller than the number of muscles.
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Fig. 4. Snapshot of sword swinging “kesagiri” motion: Motion capture data are mapped onto the musculoskeletal model.

2.2. Sensory Motor Organs and Control Nerves
A muscle spindle senses muscle elongation and is par-

allel to extrafusal muscle fiber. The Golgi tendon organ
senses force generated by a muscle. Other sensory mo-
tor organs include the joint receptor responding to torque
applied to a joint and the nociceptor responding to joint
pain.

2.3. Calculation of Spinal Neural Information
We focused on the spinal nervous system controlling

most skeletal muscles and on the spinal nerve connecting
spinal cord and sensory motor organs. They convert motor
information to neural information bundled by spinal cord
segments based on the muscle control structure. Fig.5
shows the spatiotemporal pattern of neural information
via (a) the musculocutaneous nerve and (b) the obturato-
rius nerve during “kesagiri” (left or right up-to-down di-
agonal cutting movement) (Fig.4). We extracted muscle
length data on a muscle controlled by these nerves and
normalized it with the muscle length when standing. The
value is represented by intensity. Numbers (1) and (2) in
Fig.5 refer to the trial numbers.

3. Measurement and Calculation of Whole-
Body Movement

3.1. Measurement of Motion and Calculation of
Muscle Movement

We used optical motion capture to measure the three-
dimensional location of markers in kesagiri. We used
inverse kinematics calculation to find the joint angle
and muscle length of the musculoskeletal human model
and inverse dynamics calculation to find muscle tension.
Time-series data was acquired each 33ms. The muscle
length was divided by the length when standing and nor-
malized. The musculoskeletal human model [4] consists
of 366 muscles, 91 tendons, 34 ligaments, 56 cartilages,
and 53 bone groups.

3.2. Kesagiri
Kesagiri is the left or right up-to-down diagonal cutting

movement by a sword named for the traditional Buddhist
priest’s left-over-right wrapped “stole” or “kesa” and in-
dicating a diagonal cut from the wrap crossing just below
the neck and across the breast down to the waist as fol-
lows:

1) The line of sight is maintained toward the direction
the sworder is facing, with the haft of the sword po-
sitioned along the frontal median line. The left foot
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Fig. 5. Spatiotemporal pattern of the neural information
at (a) musculo cutaneus nerve and (b) obturatorius nerve
during “kesagiri” motion. The numbers 1 and 2 indicates
the trial numbers. The characters a to f correspond to the
snapshot of Fig.4. The innervating muscles are: (a) cor-
fig:correlillustacobrachialis, biceps brachii, and brachialis
muscle; (b) obturatorius, adductor longus, adductor brevis,
pectineus, grachilis, adductor minimus, adductor magnus
from center to both sides.

is set forward, the right foot back (vice versa for a
left-handed sworder), so the sword cuts diagonally
forward (Fig.4(a)).

2) The sword is swung up to the left above the head.
The cutting edge moved forward diagonally right.
The feet change position as the opponent is cut down
(Fig.4(b) to (d)).

3) The sword is swung down from upper right straight
to lower left to maximize its velocity at the front
(Fig.4(d) to (f)). The shoulders should be as relaxed
as possible to accelerate the sword tip under the force
of gravity.

4) As the sword reaches the lower left, it is abruptly
halted with the right foot positioned forward and the
left foot back (Fig.4(f)).

As a typical coordinating movement involving the en-
tire body, kesagiri requires much practice. It is evaluated

x

y

z

irrelevant direction sword velocity

effective direction

Fig. 6. Decomposition of sword velocity into effective and
irrelevant directions.
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Fig. 7. Effective and irrelevant velocities of the sword tip;
objective evaluations were (a): 1, (b): 5.

based on (a) the location of the starting position; (b) the
location of the end point; (c) the direct trajectory advance
connecting the starting and end points; (d) proper whole-
body relaxation, particularly the arm; and (e) the dynamic
stability of the entire body. Unless otherwise noted, the
data handled is sensory information acquired by measur-
ing kesagiri.

3.3. Calculation of Evaluation Values
We focused on the direct trajectory advance in (c)

above, considered most important for cutting down an op-
ponent. Specifically, velocity is broken down into the ef-
fective component parallel to the sword blade and the ir-
relevant (unstable) component perpendicular to the blade
to compare their maximum values (Fig.6). If the x-axis is
taken from the blade to the back, the y-axis perpendicular
to the blade and toward the right from the back, and the
z-axis from the haft of the sword to the tip, the effective
component is x and the ineffective component y. If the ef-
fective component is greater and the irrelevant component
smaller, the sword tip is evaluated as having its direction
along the trajectory and the score of direct advance higher.
Fig.7 plots sword tip velocities for low and high evalua-
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Fig. 8. Condensation ratio at each section of the spinal cord
during (a) “kesagiri” and (b) kick motion.

tions of direct trajectory advance. Maximum values of the
y component are 10.1 and 0.844m/s, while sword tip ve-
locities are almost the same and the x component peaks at

14 5 and 14 4m/s.

4. Spinal Neural Information Processing

4.1. Dimension of Spinal Neural Information

In order to examine motor coordination in the same
segment of the spinal cord, the dimension of somatic neu-
ral information is found by analyzing principal compo-
nents. Specifically, the number of elements is calculated
for accumulated contribution to exceed 0.8. To determine
how the dimension is reduced compared to the original
DOF, a reduction ratio is calculated dividing the dimen-
sion by the number of elements. The smaller this reduc-
tion ratio, the higher the degree of coordination.

We selected kesagiri and a kick in the middle as ex-
amples of whole-body coordination and conducted three
experiments for each. We found the dimension and reduc-
tion ratio for neural information near cervical (C4 to C8)
and lumber (L2 to L5, S1) enlargement of the spinal cord
(Fig.8). These enlargements control the upper and lower
limbs. The dimension of neural information was 4 to 7 in

trial 1 trial 2

same segment

time

(a) (b)

Fig. 9. Calculation of temporal change and phase contrast
in spinal neural information based on correlation.

each spinal cord segment for kesagiri. A reduction ratio
that divides the dimension by the number of elements was,
about 0.06, particularly near C6 and C7, about 0.1 at other
sites. Similarly, for the kick in the middle, the dimension
of neural information was 6 to 10, while the reduction ra-
tio was 0.2 at C4 and 0.1 at other sites. Compared to the
kick, kesagiri has a smaller reduction ratio. A specifically
large difference is found at C4 and L4, each of which has a
small reduction ratio and a small difference at C6 and C7.
For the kick, the upper limb (C4 to C8) is constant, and a
large variation is seen on the lower limb (L2 to S1). Co-
ordination changes at these locations where the reduction
ratio changes, i.e., spinal cord segment greatly changes
the timing of driving muscle. Our results represent the
amount of information required to approximate the time
series of data with the linear vector. We found that so-
matic neural information during whole-body motion was
extremely reduced for each spinal cord segment and that
the degree of coordination was high. For two types of
experimental movement, we found that the condensation
ratio was at the same level, about 0.1.

4.2. Temporal Change in Spinal Neural Informa-
tion

The pattern of time t to t N is extracted from the spa-
tiotemporal pattern of neural information, and the correla-
tion with time t 1 to t N 1 is calculated (Fig.9(a)). A
temporal change in correlation is acquired with one step
later time pattern. The value subtracting one from corre-
lation is assumed to be variation. Correlation is used here
because if the difference is determined conventionally, it
is adversely affected by noise.

We found afferent neural information (muscle length
information) sent from the muscle spindle of the entire
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Fig. 10. Temporal change of spinal neural information at
cervical enlargement: (a)C4, (b)C5, (c)C6, (d)C7, (e)C8.
The characters a to f correspond to the snapshot of Fig.4.

body to the spinal cord by calculation. The time window
size was set to N 9. Fig.10 and Fig.11 show temporal
changes in neural information near cervical enlargement
(C4 to C8) and lumbar enlargement of the spinal cord (L2
to L5, S1). These enlargements control the upper and
lower limbs. A comparison of changes in cervical and
lumbar enlargement show that those of cervical enlarge-
ment exceeds those of lumbar, and both have two peaks.
Upper positioning at cervical enlargement causes the last
half to have a greater peak than the first half. In contrast,
the lower positiononing at lumber enlargement causes the
last half has a greater peak. Changes are smoother at
lumber enlargement than at cervical enlargement. The
first half peaks sooner at cervical enlargement except at
C4, while the last half peaks earlier at lumbar enlarge-
ment. We found that muscular activity synchronized and
changed for each spinal cord segment and that synchro-
nization timing differs slightly.

4.3. Correlation and Phase Difference in Spinal
Neural Information

This section details procedures for calculating the cor-
relation and phase difference of the spatiotemporal pattern
of neural information (Fig.9(b)). Let the spatiotemporal
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Fig. 11. Temporal change of spinal neural information at
lumbar enlargement: (a)L2, (b)L3, (c)L4, (d)L5, (e)S1. The
characters a to f correspond to the snapshot of Fig.4.

patterns of the first trial as source data, while those of the
following trial as the target data. Computational proce-
dure is as follows:

1) Take a template x i from the source data of arbitrary
period from time i to i N. The partial target data of
arbitrary period from time j to j N are taken as
y j . The lengths of the source and target data are
iend and jend, respectively.

2) Correlation of the x i and y j are calculated.

f x i y j
x i y j

x i y j

The maximum value of f x i y j among every
y j ( 0 j jend N and the corresponding time
jmax were stored for each template x i . Correlation
is from 1 to 1, and 1 for complete agreement, if
the size agrees and the direction is opposite, 1 is
used.

3) Maximum correlations f x i y jmax for each tem-
plate x i are obtained by substituting 0 through
iend N into i.
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Fig. 12. Corresponding time and variation between the neu-
ral information of (a) the fifth cervical nerve (C5) and (b) the
second lumbar nerve (L2) during the two trials for the “kesa-
giri” motion. Corresponding times are plotted by circles and
variations are plotted by rhombuses.

With this method, we can compare the differences of
each neural pattern and corresponding time. In this study,
the size of the template N was 9. Results were plotted in
the following manner:

1) Draw a horizontal axis for the time of source data,
and a vertical axis for plotting the corresponding
time of target data and their differences. Variation
1 f x y was plotted since the correlation f x y
was nearly equals to 1. Note that maximum value of
correlation is 1 and its minimum is 1.

2) Make lines between the corresponding times of hor-
izontal axis drawn in parallel: top axis for the time
of source data and a bottom axis for the time of tar-
get data. The purpose of this time chart is to make
clear the phase difference of each trial in the same
segments.

3) Draw horizontal axes in parallel: top axis is for the
time of target data of one segment, and bottom axis is

for the one of another segment. In this way, relative
phase differences between segments are obtained.

4.3.1. Correlation and Corresponding Time of Neural
Information

Figure 12 plots correlation and the corresponding time
of neural information on spinal nerves. These correspond
to the fifth cervical nerve (C5) and the second lumbar
nerve (L2). The horizontal axis shows the time of trial
1, while the vertical axis shows the corresponding time of
trial 2 and the correlation between these times. Correla-
tion was so great that a variation was taken and multiplied
by 104 for plotting. This means that the greater the value,
the greater the pattern difference. Correlation is plotted
by rhombuses and corresponding times by circles.

The corresponding time plot (Fig.12(a)) for the fifth
cervical nerve (C5) is smooth with a slope below 1 in the
first half. Locations after 75 frames have a slope of almost
1. Compared to trial 1, trial 2 indicates that the first half
has quick change. In contrast, the second lumbar nerve
(L2) (Fig.12(b)) has a sharp slope between 65 frames and
70 frames and a smooth slope at other times. Compared
to 1, trial 2 has a smaller velocity where the slope is sharp.

4.3.2. Phase Difference in Neural Information

Figure 13 plots the timing chart for two trials after
the corresponding time is read from correlation. For
Fig.13(a) and Fig.13(b), the upper stage of the horizon-
tal axis is the time for trial 1, while the lower stage is
corresponding time for trial 2. Fig.13(c) shows the corre-
sponding time between different nerves of trial 2 based on
the time of trial 1 of Fig.13(a) and Fig.13(b). The upper
stage of the horizontal axis in Fig.13(c) is the time of the
fifth cervical nerve (C5), while the lower stage of the hor-
izontal axis is the corresponding time of the second lum-
bar nerve (L2). The corresponding time was taken each 5
frames.

The timing misalignment of the fifth cervical nerve
(C5) focuses on the first half (Fig.13(a)). 20 frames from
50 to 70 frames in trial 1 correspond to 10 frames from 26
to 36 frames in trial 2, indicating half of the time. In other
words, a similar pattern appeared at double speed. For the
latter half, 36 to 46 frames correspond to 70 to 80 frames
in trial 1 at the same speed. The timing misalignment of
the second cervical nerve (L2) is slight found in both the
first and latter halves (Fig.13(b)). 65 to 70 frames in trial
1 correspond to 35 to 40 frames in trial 2 at the same speed
on average. Before and after them, the time for 11 frames
is needed for 15 frames, and 7 frames for 10 frames. From
the corresponding time of C5 and L2 in trial 2 (Fig.13(c)),
C5 activity begins later than L2 and proceeds for such a
delay. In contrast, the latter half proceeds later than L2.
We found that the spatiotemporal pattern for each spinal
cord segment was similar and that the generated timing
was different. Trial 1 had a high evaluation, but trial 2
had a low evaluation. The cause of a difference in the
evaluation value was made possible to represent at neural
information level.
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Fig. 13. Temporal diagram of the neural information of (a)
the fifth cervical nerve (C5) and (b) the second lumbar nerve
(L2) during the two trials for the “kesagiri” motion. Phase
difference between the neural information at C5 and L2 is
plotted in (c).

4.4. Segmental and Inter-Segmental Coordination
of the Spinal Neural Information

4.4.1. Calculation of Spinal Cord Segmental Coordi-
nation

Figure 14 shows how to calculate spinal cord seg-
mental coordination, implemented by the correlation be-
tween reference and target data. Both data assume the
spatiotemporal pattern of neural information in differ-
ent spinal cord segments, extracted from the same motor
data. They extract the muscle length data governed by
the spinal cord segment and normalize it with the mus-
cle length when standing for matrix arrangement. Time-
series data of muscular motor information for one mus-
cle is extracted from reference data as the template and
the correlation is calculated for that time-series data for
each target data. Templates extracted from reference data
should be shifted one by one, meaning that the correlation
is calculated between all neural information in reference
and target data. This detects the coordination of motor in-
formation between muscles controlled by a certain nerve.
The higher correlation means the higher coordination be-
tween muscles and the lower correlation means the lower
coordination. Acquired coordination is arranged in a ma-
trix as shown in the figure. The number of neural data
elements is not necessarily consistent nor the number of
nerves the same, making it possible to calculate the corre-
lation between different spinal segments.

segment i

segment j

muscle k

muscle l

time

time

correlation

Fig. 14. Segmental coordination matrix between the seg-
ment i and j of neural information: each element of matrix
is the correlation of muscular information innervated by the
segments.

4.4.2. Calculation of Coordination Between Spinal
Cord Segments

Next we discuss how to calculate the coordination be-
tween spinal cord segments using calculated results of
correlation in the spinal cord segment. Vertical and hori-
zontal axes of the inter-segmental coordination matrix are
spinal cord segment names and the average of correlated
values between corresponding segments is stored. The
value of a mesh is the average of the mesh values of the
intraspinal cord segment coordination matrix specified by
a set of motor data and spinal cord segments. This process
is repeated for all combinations of spinal cord segments.
As mentioned, it is possible to calculate the condition of
a local and global coordination by calculating oordination
hierarchically for each spinal cord segment.

4.4.3. Analytical Experiment of Coordinated Motion

Figure 15 shows how the intrasegmental coordination
of spinal cord is arranged at the C5 segment. C5 controls
the upper body muscles such as the greater pectoral mus-
cle, brachial muscle, and levator scapulae muscle. This
indicates that the greater the intensity, the higher the co-
ordination. The intensity of each point represents the co-
ordination of motor information between muscles inner-
vated by the same segment. There is a difference even
in the same spinal cord segment, but coordination is high
as a whole and minimum correlation was 0.949. Fig.16
shows the correlation representing the intersegmental co-
ordination of spinal cord in a matrix. Even if the spinal
cord segment location differs, there may be high coordi-
nation. When coordination between far segments is high,
the command from the brain is considered synchronized.
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Fig. 15. Segmental coordination matrix among the segment
C5 during “kesagiri” motion.

C4  C5  C6  C7  C8  L2  L3  L4  L5  S1  S2

C4

C5

C6

C7

C8

S1

L3

L4

L2

L5

S2

Fig. 16. Intersegmental coordination matrix between the
segment C4-C8, L2-L5, S1-S2 during “kesagiri” motion.

5. Motor Learning Support

Factors preventing implementation of the target motion
are divided largely into the following three:

1) Resultant motion cannot be properly sensed.

2) Even if motion is sensed, how to correct it is un-
known.

3) Even if how to correct motion is known, muscles
cannot act as intended.

Correspondence between sets of objective evaluation
and neural data and their comparison at the level of neural
data contributes to the elimination of the factors at the first
and second stages. The following procedures make char-
acteristic data found by the proposed method helpful for
motor learning support. Trials by a beginner in the motor

motion caputure system

motor-information

calculator

neural-information

calculator

motor learning

support device

display device

Fig. 17. Flow chart of the motor learning support sys-
tem comprising motion capture system, motor-information
and neural-information calculator, motor learning support
device, and display device.

learning process are accumulated with progress in repeti-
tive learning and evaluated, and then the beginner’s high-
est trial is summarized. The objective evaluation differs
for motion types, but it includes, for example, the direct
trajectory advance for the kesagiri when a wooden sword
is raised while stepping one step and swung down diago-
nally. The beginner can know when objective evaluation
is high and correspondence to the coordinated condition
to implement it. Repetitive trials should be made to bring
them closer together.

The system configuration is shown in Fig.17. Motor
learning support includes a motion-capture device, a mo-
tor information calculator, a neural information calcula-
tor, and motor learning support. The motion-capture de-
vice measures and stores the 3D location of the body.
The motor information-calculator calculates the length
and generative force (motor information) of motor or-
gans such as muscles, tendons and ligaments from re-
sults measured by the motion-capture device and stores
motor information in memory. Based on the structural
function model of the human nervous system, the neu-
ral information-calculator converts motor information ac-
quired by the motor information-calculator to neural in-
formation and stores it. The motor learning support de-
vice extracts features from motor information acquired
by the motor information-calculator and neural informa-
tion by the neural information-calculator and stores mo-
tor feature information and neural feature information. It
also references stored motor information, neural informa-
tion, motor feature information, and neural feature infor-
mation and combines them with motor information ac-
quired by the motor information-calculator or neural in-
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formation by the neural information-calculator for pro-
cessing to find and store motor feature information and
neural feature information. The display unit in the neural
information-calculator or motor learning support device is
used for presentation. The system supports the beginner
in finding an achievable neural activity pattern by making
the above motor feature information and neural feature
information correspond to objective evaluation of move-
ment results in the motor learning process, accumulating
them, and presenting them to the beginner.

6. Discussions

Studies focusing on the neuromuscular system are well
known in walking robot control [13–17] and estimation of
arm posture from surface EMG signals [18, 19]. We have
proposed extracting motor features based on the struc-
ture of the human neuromuscular system by dividing the
whole-body motion pattern into basic patterns by nerve.
We do not handle the physiological parameter of the ner-
vous system as in studies of the walking neural circuit
[20, 21], and use only the segmental structure of the neu-
ral system to pick up information. We normalized a re-
duction ratio with the number of control nerves for each
spinal cord segment. Other normalization with a number
of degrees of joint freedom may exist. Since we focused
on coordination between upper and lower limbs, we did
not separate left and right for calculation, but there is a
variation of this separation.

We used measured muscle length information, but sen-
sitivity is adjusted by the γ motor neuron. Thus, even if
the length or extension velocity is the same, signals with
the same strength may not always be sent from the muscle
spindle to the spinal cord. Acquired spatiotemporal pat-
terns represent neural information from motor organs, but
note that they are not always consistent with strict neural
signal strength, but rather represent muscle length infor-
mation acquired by integrating afferent signals sent from
the muscle spindle to the spinal cord and efferent signals
from the spinal cord to the muscle. It is important to have
successfully structured information given by signals dif-
ficult to acquire by direct measurement of the brain or
nerves. We did not use information on muscle tension,
because many assumed boundary conditions are required
at a step in calculating the distribution of muscle tension
based on joint torque acquired from inverse dynamics cal-
culation. We used muscle length and muscular extension
velocity because we can calculate these variables without
any assumption. The information processing we proposed
is applicable to muscle tension information in the same
way.

We use the anatomical structure of the spinal cord to
read body motor information as neural information for
processing and present results directly to the beginner. It
may be possible to convert neural information once more
to information that the beginner easily intuits for more ef-
fective support of motor learning.

7. Conclusions

Conclusions of this paper are as follows:

We proposed method for analyzing neural informa-
tion through motion measurement. We have pre-
sented a way that extracts four features. Experimen-
tal data was processed to demonstrate its effective-
ness.

We classified muscular motion data for each inner-
vating spinal cord segment in order to obtain the neu-
ral information based on the anatomical structure of
the spinal cord.

Firstly, we calculated the dimension of neural infor-
mation and confirmed that it was extremely reduced.

Secondly, we calculated temporal variation in neu-
ral information. The peak size and phase differences
were found between neural information at different
segments.

Thirdly, correlation was calculated between local
patterns of neural information. Corresponding times
were found between different trials from correlation
to compare phase differences generated by similar
patterns.

Fourthly, we calculated the coordination between
muscles innervated by the same segment and also be-
tween different segments of the spinal cord.

Finally, we proposed motor learning support method
that makes use of the neural information features ac-
quired above.

The proposed method is to be included into the motor
learning support system comprising motion capture sys-
tem, musculo-skeletal model and nervous system model.
They convert motion capture data into neural informa-
tion. With such a system, we can record pairs of neu-
ral information and objective data such as the speed and
straightness of the sword swinging. The learner will be
benefited by comparing the subjective data and internal
perspective of self motion in the nervous system. Motion
regulation process is seen by comparing extracted features
when the same person performs a repeated practice. Anal-
ysis of tuning patterns by experts benfits the development
of training to approach their techniques. Future work
includes modeling of neurons, sensory and motor cells
and regulation mechanisms among them. Motion mea-
surement is the traditional method, however, this will be
the powerful way for measurement and analysis of neural
activities during motor learning, which is different from
the direct recording of the neural signals or brain imaging
method.
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