Autonomous collaborative environment for project-based learning

Mihoko Otakea,b,*, Ryo Fukano c, Shinji Sako c, Masao Sugi d, Kiyoshi Kotani d, Junya Hayashi c, Hiroshi Noguchi c, Ryoichi Yoneda c, Kenjiro Taura c, Nobuyuki Otsu c,e, Tomomasa Sato c

a Division of Project Coordination, The University of Tokyo, Japan
b PRESTO Programme, Japan Science and Technology Agency, Japan
c Graduate School of Information Science and Technology, The University of Tokyo, Japan
d Graduate School of Engineering, The University of Tokyo, Japan
e National Institute of Advanced Industrial Science and Technology, Japan

* Corresponding author at: Division of Project Coordination, The University of Tokyo, Japan.
E-mail address: otake@hgc.jp (M. Otake).

1. Introduction

Information technology of the 20th century centering on information equipment represented by the Internet and personal computers is about to come to a turning point, after the start of the new millennium. The real-world-based information scientific technology of the 21st century should stand on a wide range of researches, namely, computer science, mathematical informatics, information physics and computing, information and communication engineering, mechano-informatics and precision engineering. Information systems of the next generation should be realized by fusing different disciplines of information science and technology, which are studied in different departments. Collaborative learning environment will promote cross-disciplinary research projects. Participation of graduate students with flexibility and mobility would accelerate such projects. The goal of this study is to develop a collaborative learning environment which supports PBL for next generation information systems. PBL stands for People-, Problem-, Process-, Product-, Project-Based Learning [1]. It originates from medical education [2,3]. Nowadays, PBL is widely used in engineering education. PBL Lab was created to provide a learning environment where architecture/engineering/construction students would collaborate in multi-disciplinary, geographically-distributed teams on project-centred activities that produce a product for an industry client [4]. In PBL, cross-disciplinary learning is conducted which is a journey from the state of island of knowledge (discipline-centric) to a state of understanding of the goals, language, and representations of the other disciplines. Students learn through solving problems and reflecting on their experience. They work in small groups guided by a facilitator. The role of the facilitator is guiding students on the learning process, pushing them to think deeply, and modelling the kinds of questions that students need to be asking themselves [5]. The role of the tutor is changing in a PBL learning environment, from the traditional teacher who delivers the course material in class to the coach. In order to support such collaborative learning process, the community has emerged in the past decade known as computer-supported collaborative learning (CSCL) [6–8] among those researchers working on computer-assisted learning [9]. One of the aims of CSCL is to promote mutual learning through interactions and discussions among learners [10]. Advanced technology can facilitate the students’ collaborative effort, but does not, by itself, provide sufficient support without appropriate pedagogical arrangements and scaffolding of the collaborative learning endeavor [11]. Therefore, the goals and strategies of an expert facilitator

A R T I C L E I N F O

Article history:
Received 12 May 2006
Received in revised form 27 May 2007
Accepted 4 June 2007
Available online 13 July 2007

Keywords:
Computer supported collaborative learning Workshop Project-based learning Contents management system Real world information system

A B S T R A C T

The importance of integrating different disciplines of information science and technology is growing for the realization of an information system which works robustly in the real world. Such a system should be achieved by integrating different disciplines, since it is difficult to cover all areas in information science and technology by only one person or group. In order to support collaboration, the autonomous collaborative environment for project- based learning was developed. The environment comprises the workshop “A Hundred Hour Workshop” and the community site “WS100H.NET”. Novel interdisciplinary technology, fusion of recognition and parallel computation was successfully developed whose collaboration process was autonomous.

© 2007 Elsevier B.V. All rights reserved.

Nowadays, PBL is widely used in engineering education. PBL Lab was created to provide a learning environment where architecture/engineering/construction students would collaborate in multi-disciplinary, geographically-distributed teams on project-centred activities that produce a product for an industry client [4]. In PBL, cross-disciplinary learning is conducted which is a journey from the state of island of knowledge (discipline-centric) to a state of understanding of the goals, language, and representations of the other disciplines. Students learn through solving problems and reflecting on their experience. They work in small groups guided by a facilitator. The role of the facilitator is guiding students on the learning process, pushing them to think deeply, and modelling the kinds of questions that students need to be asking themselves [5]. The role of the tutor is changing in a PBL learning environment, from the traditional teacher who delivers the course material in class to the coach. In order to support such collaborative learning process, the community has emerged in the past decade known as computer-supported collaborative learning (CSCL) [6–8] among those researchers working on computer-assisted learning [9]. One of the aims of CSCL is to promote mutual learning through interactions and discussions among learners [10]. Advanced technology can facilitate the students’ collaborative effort, but does not, by itself, provide sufficient support without appropriate pedagogical arrangements and scaffolding of the collaborative learning endeavor [11]. Therefore, the goals and strategies of an expert facilitator

0921-8890/$ – see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.robot.2007.06.003
have been studied and how to implement a system with built-in facilitation function [5].

In this study, the autonomous collaborative environment for project-based learning was developed which respects the initiative of the participants in order to bring out autonomous collaboration. The workshop named “A Hundred Hour Workshop” for graduate students was carried out during summer holidays by some of the members of the real world information systems project in the 21 COE programme “Information Science and Technology Strategic Core” at the Graduate School of Information Science and Technology of the University of Tokyo [12]. The community site named “WS100H.NET” [13] was also developed for supporting and analysing the autonomous collaboration process. The originality of this research is to propose a set of protocol as well as platform which shapes collaborative learning environment with practical embodiments.

2. A hundred hour workshop

Activity centred workshop protocol was designed and conducted. The authors of this paper were the committee, and the first author played a role of the facilitator, instructor, tutor, or coach of the workshop. These terms are used interchangeably in this paper. The committee configured the deadline and called for collaborative project proposal to the workshop. The intended applicants were the groups of graduate students who belonged to different labs of different departments of the graduate school of information science and technology and graduate school of engineering. The committee provided research funding of about a thousand dollars per one team, which mostly equals the salary of the teaching assistant for a hundred hours in the university. Therefore, we named the workshop, “A Hundred Hour Workshop”. The participants have to develop cross-disciplinary technology which demonstrates the information system in the near future based on their proposals. They have responsibilities and obligations to show their results at the final presentation. The application period was 15 days after the orientation. The orientation was on July 22, and the application period was from July 25 to August 8. The kickoff was the next day of the application deadline. The development period started on the next day of the kickoff and lasted for 52 days. The kickoff was on August 9 and the final presentation was on September 30.

3. The community site, WS100H.NET

The community site named WS100H.NET [13] was developed for supporting the autonomous collaboration process of the workshop (Fig. 1). We expected accumulation of empirical knowledge which usually remains inside the participants. The site is based on one of the typical contents management system called XOOPS [14]. XOOPS is a program that allows administrators to easily create dynamic websites with great content and many outstanding features. It is an ideal tool for developing small to large dynamic community websites, intranet portals, corporate portals, weblogs. XOOPS uses a relational database (MySQL) to store data required for running a web-based content management system. Modules can be installed/uninstalled/activated/deactivated with a click using the XOOPS module administration system. We installed the following modules: forum, album, calendar, news, link, download, wiki, FAQ and questionnaire. Among them, participants mainly submitted their contents to forum, album and calendar. In other modules, the tutor submitted the contents beforehand.

The contents submitted by the committee are described below. On news module, the tutor announced the orientation, kickoff and final presentation schedules and acceptance of the proposals. On link module, the committee offered useful links for the participants. On download module, the tutor posted application formats and documents. On wiki module, the committee offered background information of the project. On FAQ module, the tutor offered general information for students and professors who are interested in the projects. On questionnaire module, the tutor prepared questions to the participants.

The contents submitted by the participants are summarized below. On forum module, three forums were created for participants: entry, progress and meeting minutes. Album was used to record the meetings and presentations. Calendar was for announcing the meeting schedules. The site offered the place for submitting self introduction, meeting information and progress reports for participants.
4. Results

4.1. Participants of the workshop

Number of attendees to the orientation was 50, and 13 students participated in the workshop. There were two teams, Team A and Team B. Team A consists of seven members, while Team B consists of six members. Members of both teams belong to either Lab X or Lab Y: research area of Lab X in the department of information and communication engineering is parallel computation; Lab Y has been working on recognition in the department of mechatronics, a cross-disciplinary area of informatics and mechanical engineering. Four students of Team A belong to Lab X, three of them belong to Lab Y. Team B consists of six members: half of them are of Lab X and the rest of them are of Lab Y. The grade of the students was as follows: one was bachelor course fourth year, six were in master course and four were in doctor course. Both teams try to speed up motion recognition software based on Cubic Higher-order Local Auto-Correlation (CHLAC) feature extraction algorithm [15] through parallel computation on GRID computing environment [16]. The goal of Team A is to speed up recognition software so as to operate in real time. The goal of Team B is to improve accuracy of the recognition which takes unrealistic period of time without parallel computing. Human motion recognition system, which can discriminate strong and weak punching and kicking motions was developed by Team A, while human gait recognition system, which can identify both person and motion by time series of image data by Team B. The development was a big success.

It is very important to make clear which aspects of the workshop are attractive for students, in order to broaden the reach of the workshop. Thus, we sent out questionnaire to the participants what was their motivation. The items of the questionnaire were skill up, networking, collaboration experience, part time job, and research interests. The workshop was appealing in this order (Fig. 2).

4.2. Emergence of autonomous collaboration

The day of final presentation was fixed by the committee of the workshop. The tutor directed the students to decide the rehearsal date. The final presentation date was set up on 52 days after the kick off. Meetings were held almost once a week in the workshop. There were meetings on 2, 9, 13, 20, 23, 27, 30 and 44 days from the start. Number of the meetings was eight: six for discussion, one for data acquisition and one for rehearsal. They were autonomously determined. During these meetings, there was no intervention by the tutor. Only students participated in the meeting except for one of the rehearsal day. The tutor answered the questions or requests via e-mail. From six to twelve students attended the meetings among thirteen students (Fig. 3).

4.3. Submission of contents

Numbers of submissions are shown in Fig. 4. There were total of 130 submissions before the presentation. Seventy-three articles were posted to forums, and 62 of them were submitted by participants. There were 17 schedules to calendar, in which seven were by participants. Participants submitted 25 photos and total numbers of photos were 40.

All members submitted to forums. One of the doctor course third year students played an important role in submitting photos to the album, meeting schedules to calendars and minutes to the meeting forum. They were registered smoothly. This assignment of role was emerged autonomously. The tutor continued asking the students to register entry data to the self introduction forum until all participants submitted their articles. Everyday task was submitted to the progress forum by the active participants. Once the first record was registered, the author submitted their records successively. We have to keep in mind that each article sometimes contains multiple days of records, although the numbers of articles were counted. Also, numbers of photos were counted for albums, and numbers of schedules were counted for calendars, both of them were easy to submit compared to the forum articles.

The tutor could observe the development of the project by the contents management system without attending the meeting. The tutor could also comprehend the tasks of each participant. This kind of process is not usually recorded on time, which limits the reproducibility and accumulation of the empirical knowledge. These recorded processes are definitely good references to people who try to practice project based learning workshop.

5. Discussion

5.1. Did students participate autonomously?

The answer to this question is partially yes and partially no. Some of the participants were acquaintance of the tutor. The tutor invited them to participate in the workshop. This process was not autonomous. These students called for participation to their colleagues, who got interested in and participated. This process was autonomous. Three other groups of attendees of the orientation also considered entry for the workshop, but they gave up because of their research schedule. In order to increase the number of participants, the workshop committee should advertise the workshop more effectively. We sent out a questionnaire in...
order to make clear what attracted the participants. The results of the questionnaire show that the major motivation for participation was skill acquisition, networking and collaboration experience. Funding was not the main reason for participation, although it attracted many students for the orientation. It is effective for attracting public interest to the projects, but not enough for participation. We should emphasize the merit of skill acquisition, networking and collaboration experience for attracting many students in the beginning.

5.2. Did autonomous collaboration emerge?

Yes. The progress of the project was extremely autonomous. The committee determined the deadline. The tutor didn't lead the development process after kickoff. The tutor only asked the participants to submit progress reports and minutes of the meeting to the community site. The tutor monitored the process through the system and communication via e-mails without attending the meetings. From the results, not every member could participate in every meeting. The members who were absent from arbitrary meetings could catch up with the next meeting by minutes and photos archived on the system. They could check the schedule of the next meeting with the calendar. In summary, the purpose of the workshop, supporting emergence of autonomous collaboration was achieved by the community site.

5.3. Was knowledge sharing achieved?

Meeting data were successfully recorded in the meeting forum, calendar and album, which supported progress of the project. Technical discussions were done with the e-mail list and forum was not used for that purpose. In order to share the generated technical knowledge among the participants, discussion should be recorded by participants or be curated by the tutor. One of the participants played a leading role during the project. He submitted most of the meeting records except for those submitted by the tutor as examples. His contribution was the key for this success. We should note that his assignment of roles emerged autonomously.

6. Conclusion

In this study, we developed an autonomous collaborative environment which supports project-based learning. The environment promoted cross-disciplinary study among graduate students of different departments. This doesn't happen without it. The goal was to realize the next generation of the information system through integrating different domains in information science and technology via collaboration. The environment comprises the workshop protocol and the community site. The workshop was proposal based, and the teams consisting of different lab members were recommended for participation. The site was built on one of the typical contents managing systems. Autonomous collaboration was achieved which is summarized as:

- Graduate students and an undergraduate student participated who are interested in skill up, networking and collaboration during summer vacation.
- Meetings were held autonomously and different lab members shared their expert knowledge.
- The tutor and committee followed autonomous collaboration process mainly through the community site without attending the meetings after kickoff. The tutor helped them when they needed help.
- Facilitation by tutor was required at first for contents submission. Once the participants started to submit, they submitted successively. Empirical knowledge such as scheduling and role assignment was recorded successfully.
- Interdisciplinary technology, fusion of recognition and parallel computation was newly developed successfully. The goal of this workshop was fulfilled.

Future work includes representing the developed technology through the collaboration with thorough description, in order to share the results among the participants and nonparticipants. We will figure out the general format or scaffold of community site for project-based learning in order to provide the universal platform. The autonomous collaboration environment which we developed is one of the role models for supporting cross-disciplinary project-based learning.

Acknowledgements

The authors thank T. Shirai, K. Ishiguro, T. Shiraki, H. Saito, Y. Kamoshida, H. Yoshimoto, R. Fukano, S. Ito, T. Nanni, K. Takahashi, Y. Horita, Y. Shimohata, and K. Kaneda for active participation in the workshop. This study was supported by the 21 COE programme “Information Science and Technology Strategic Core” with the Graduate School of Information Science and Technology, and Science Integration Programme — Humans, of the University of Tokyo.

References

[12] Information Science and Technology Strategic Core, The 21 COE Program at the Graduate School of Information Science and Technology of the University of Tokyo website. URL: http://www.u-tokyo.ac.jp/coe/index-e.html.

Fig. 4. Numbers of submissions to the community site: total numbers of submissions were 130; 73 articles were posted to forums, and 62 of them were submitted by participants; there were 17 schedules to calendar, in which seven were by participants; participants submitted 25 photos and total numbers of photos were 40.
Mihoko Otake has been appointed as an Associate Professor with Research into Artifacts, Centre for Engineering since 2006, concurrently with the Science Integration Programme – Humans, the University of Tokyo. Her research focuses on modeling and simulation of human neural and cognitive functions towards knowledge infrastructure for developing human-centred information systems and services. She has been a PI of the Precursory Research for Embodied Science and Technology Programme of Japan Science and Technology Agency, “Development of Bilateral Multiscale Neural Simulator” since 2004. She received the B.E., M.E. and Ph.D. in 1998, 2000, and 2003, respectively, all from the University of Tokyo, in Mechano-Informatics. She has been awarded as a JSPS Research Fellow since 2001–2003. During her Ph.D. studies, she made contributions to the modelling, design and control of deformable robots consisting of electroactive polymer gels. For the accomplishments, she received Young Investigator Award from the Robotics Society of Japan in 2003. She has been a specially appointed faculty for the 21 COE Programme since 2003–2005, and an Assistant Professor with Science Integration Programme – Humans, the University of Tokyo since 2005–2006.

Ryo Fukano received the Ph.D. degree in engineering from the University of Tokyo, Tokyo, Japan, in 2007. He is currently working in KOMATSU corporation. His main works are “Statistical Manipulation Learning of Unknown Objects by a Multi-Fingered Robot Hand”, “Acquisition of Unknown Object Property for Manipulation by a Compliant Multi-Fingered Hand” and “A Cognitive Architecture for Flexible Imitative Interaction Using Tools and Objects”. He is a member of Robotics Society of Japan (RSJ).

Shinji Sako received the Ph.D. degree in engineering from Nagoya Institute of Technology, Japan, in 2004. Between 2004 and 2007 he worked as a specially appointed faculty member at the University of Tokyo. He is currently working as assistant professor at Nagoya Institute of Technology. His fields of interest include auditory and speech signal processing, human computer interaction.

Masao Sugi was born in Tokyo, Japan in 1974. He received the B.E. degree in mathematical engineering in 1998 and the M.E. and Ph.D. degrees in precision engineering in 2000 and 2003, respectively, from the University of Tokyo, Tokyo, Japan. From 2003 to 2007, he was a Research Associate at the University of Tokyo. He is currently a Project Lecturer at the University of Tokyo. His research interests are decentralized autonomous systems, manufacturing systems, and human–robot interaction. Dr. Sugi is a member of the IEEE, the Society of Instrument and Control Engineers, the Robotics Society of Japan, and the Japan Society for Precision Engineering.

Kiyoshi Kotani received the Ph.D. degree in engineering from the University of Tokyo, Tokyo, Japan, in 2003. Between 2003 and 2006 he worked as a specially appointed faculty member at the University of Tokyo. He is currently working as a Lecturer at the University of Tokyo. His fields of interest include biomedical signal processing, nonlinear dynamics, and human interface.

Junya Hayashi is a researcher in R&D Department at TriAx Corporation. His research interests include three dimensional display, virtual reality, and computer science. Junya received a Ph.D. in system engineering from the University of Tokyo. Contact him at junya@triax.jp.

Hiroshi Noguchi received Ph.D. in Information Science and Technology from the University of Tokyo. He is now a Research Associate at the University of Tokyo and a researcher at CREST, Japan Science and Technology Agency. His research interests include sensor network, distributed computing system, robotics and data mining. He is a member of the Robotics Society of Japan.

Ryuichi Yoneda finished his doctor course of the University of Tokyo in 2006, received his M.S. from Nara Advanced Institute of Science and Technology, B.S. from the University of Tokyo. His research interests include music information processing with the methodology of linguistic information processing.

Kenjiro Taura is associate professor at Department of Information and Communication Engineering, University of Tokyo. He was born in 1969, and received his B.S., M.S. and D.Sc. degrees from University of Tokyo in 1992, 1994 and 1997. His major research interests include parallel/distributed computing and programming languages. He is a member of ACM and IEEE.

Nobuyuki Otsu received B.S., Mr. Eng. and Dr. Eng. in Mathematical Engineering from the University of Tokyo in 1969, ’71, ’81, respectively. He joined ETL (Electro-Technical Laboratory) in 1971 and has been engaged in theoretical research and its application concerning pattern recognition, multivariate analysis, neurocomputing, and real-world intelligence. He became Head of Mathematical Informatics Section in 1985, Director of Machine Understanding Division in 1991, and has been Fellow of the newly reorganized AIST (National Institute of Advanced Industrial Science and Technology) from 2001. Concurrently he has been Professor at Cooperative Graduate School, University of Tsukuba, from 1992, and Professor at the Graduate School of Information Science and Technology, University of Tokyo, from 2001. From 1992 to 2001, he promoted the MITI’s 10 years national project, Real World Computing, especially Real World Intelligence project.

Tomomasato Sato received the B.S., M.S. and Ph.D. degrees in mechanical engineering from the University of Tokyo, Japan, in 1971, 1973 and 1976 respectively. Since 1976, he has been with the Electrotechnical Laboratory (ETL) of the Ministry of Industrial Science and Technology. In 1991, he moved to the Research Centre for Advanced Science and Technology (RCAST) of the University of Tokyo. From 1998, he is a Professor of the Department of Mechano-Informatics of the university. His current research interests include intelligent machine, human symbiosis robot and environmental type robot systems. Ph.D. Sato is an active member of the IEEE Robotics and Automation Society, the Japan Society of Mechanical Engineers, the Society of Instrument and Control Engineers, the Japanese Society for Artificial Intelligence, and the Robotics Society of Japan.